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This article describes the results of three case studies conducted consecutively, in order to develop a

process control strategy for a top-spray fluid bed granulation process. The use of several real-time

particle size (i.e., spatial filter velocimetry and focused beam reflectance measurement) and moisture (i.e.,

near infrared (NIR) and Lighthouse near infrared spectroscopy) analyzers was examined. A feed-forward

process control method was developed, where in-line collected granulation information during the

process spraying phase was used to determine the optimum drying temperature of the consecutive

drying phase. Via real-time monitoring of process (i.e., spraying temperature and spray rate) and product

(i.e., granule size distribution and moisture) parameters during the spraying period, the batch bulk

density was predicted at the end of the spraying cycle, using a PLS model. When this predicted bulk

density was not meeting the desired value, the developed control method allowed the calculation of an

adjusted drying temperature leading to the desired batch bulk density at the end of the granulation

process. Besides the development of the feed-forward control strategy, a quantitative PLS model for

in-line moisture content prediction of the granulated end product was built using the NIR data.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

Fluid bed granulation has extensively been used in the pharma-
ceutical industry since Wurster proposed the agglomeration process
for pharmaceutical applications over five decades ago [1,2]. Top-spray
fluid bed granulation entails the suspension of powder particles in an
air stream and spraying a binder liquid from the top down (counter-
current to the fluidizing air) onto the fluidized bed. In that way,
moistened particles collide with each other, agglomerate and form
granules. After spraying the required amount of granulation liquid
(spraying phase), the product is dried inside the fluid bed granulator
until a pre-set exhaust air temperature is achieved corresponding to
the desired moisture level (drying phase). Similar to all other wet (or
dry) granulation processing techniques, the main objectives of fluid
bed granulation are to improve the flow characteristics and compact-
ibility of a powder mixture, to decrease dustiness and/or to prevent
mixture segregation. It is a complex process as many interrelated
parameters influence the granule properties and consequently the
quality of the resulting tablets.
ll rights reserved.
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Traditionally in pharmaceutical batch manufacturing, the critical
quality attributes of the end product are assessed via off-line
laboratory testing. Depending on the outcome of these tests, the
batches are labeled as in- or out-of-specification products and are
released or discarded. A more efficient way of operating consists of
in-process quality assessments based on timely measurements,
offering real-time quality evaluation of the intermediate and end
products. The Process Analytical Technology (PAT) framework
initiated by the Food and Drug Administration (FDA) encourages to
move from off-line laboratory tests to timely measurements executed
directly in or near the process environment [3]. Off-line measure-
ments should be replaced by at-line, on-line or in-line measurements.

The control of fluid bed granulation processes conventionally
consists of monitoring process parameters (e.g., process air flow,
volume, humidity) [4]. The progress of drying is determined by
the outlet air and granule bed temperature combined with the
drying time. Fluid bed granulation endpoint is reached when a
pre-set exhaust air temperature is obtained. However, direct
product property measurements (e.g., moisture, particle size
distribution, material solid state) should also be considered.

Both spatial filter velocimetry (SFV) [5–14] and focused beam
reflectance measurement (FBRM) [15–17] are able to record in
real-time any changes to the particle size and its distribution



Table 1
Overview of the performed design experiments (2-level full factorial design with

3 replicates of center point).

Batch Inlet air T during

spraying (1C)

Spray rate (g/min) Inlet air T during

drying (1C)

1 30 12 50

2 50 12 50

3 30 20 50

4 50 20 50

5 30 12 70

6 50 12 70

7 30 20 70

8 50 20 70
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during granulation. These sizing techniques provide a picture of
granule growth and breakage as a function of granulation time by
the measurement of the particle chord lengths. A chord length is
defined as the straight line between any 2 points on the edge of a
particle. The measuring principle of SFV consists of an extended
spatial filter method based on the shadows created onto a
detector by the movement of particles through a laser beam
[18,19]. From these shadows, the particle chord length distribu-
tion and velocity are simultaneously extracted. FBRM uses the
laser beam light backscattered into the probe when the beam
crosses the surface of a particle [20,21]. Multiplication of the
duration of each reflection by the known velocity of the scanning
beam results in a chord length measurement. Both techniques do
not require any calibration. The FBRM C35 probe is equipped with
a mechanical scraper on the sapphire measurement window to
prevent probe fouling, whereas the SFV probe utilizes a pressur-
ized air connection to keep the measurement windows clean and
disperse the particles.

The binder liquid addition and distribution affect the granule
bed moisture level during granulation, contributing to the
agglomeration process. The end product residual moisture con-
tent directly influences the granule properties, the subsequent
post-granulation process steps (e.g., tabletting) and the product
stability during storage. Near infrared (NIR) spectroscopy is highly
suitable to evaluate moisture in-line during granulation [22]. The
NIR spectral region is defined as the area across the wavenumber
range 12,500–4000 cm�1. The molecular NIR light absorptions are
mainly due to overtone and combination bands of fundamental
vibrations in the MIR region [23]. As primarily vibrations of C–H,
O–H, S–H and N–H bonds are observed, water exhibits strong
absorption bands in an NIR spectrum. NIR measurements are non-
destructive and the instrumentation exhibits a high measurement
speed and robustness. Besides chemical product information, NIR
spectroscopy is also sensitive to physical (e.g., particle size)
sample properties which are both quantitatively and qualitatively
interpretable [24,25]. Hence, NIR spectroscopy has been exten-
sively used for in-line fluid bed granulation monitoring [8,26–28],
comprising (end product) moisture content [8,24,26,27,29–36]
and/or granule size [24,26,29,31].

This article describes the results of three case studies
conducted consecutively, in order to develop a process control
strategy for a top-spray fluid bed granulation process. Figure S1
(see supplementary data) displays the experimental setups for
the 3 case studies. Real-time granule size distribution information
was provided via the implementation of an SFV probe directly
into the process environment in case studies A and B, while in
case study C an FBRM probe was (identically) installed in the
granulator. Simultaneously, NIR spectra were collected at-line
(case study A) and in-line (case studies B and C). The rapid data
collection offered by these PAT tools enables real-time granula-
tion analysis to control the manufacturing process.

The feed-forward process control strategy developed in this study
uses the in-line collected granulation information during the spraying
phase, to determine the optimum process setting (drying tempera-
ture) of the consecutive drying phase. Via real-time collection of
process (i.e., spraying temperature and spray rate) and product (i.e.,
granule size distribution and moisture) parameters during the spray-
ing period, the batch density is predicted early-on, i.e., at the end of
the spraying cycle. When the predicted density does not meet the
desired value, the control method proposes the use of an adjusted
drying temperature leading to the desired granule density at the end
of the granulation process. In all case studies, 2 steps were taken to
develop this feed-forward control method:
9 40 16 60

10 40 16 60
(i)

11 40 16 60
Using design of experiments (DoE), individual regression
models for the prediction of bulk and tapped density were
developed based on 3 process parameters, i.e., spraying

temperature, spray rate and drying temperature.

(ii)
 The development of a partial least squares (PLS) model to

predict the end product density (y) from the granulation
process and product information (X) collected during the
spraying period. Separate PLS models were developed for
bulk and tapped densities.
The resulting control strategy combines the PLS density pre-
diction model with the design regression equation, as is explained
later in the manuscript.

Besides the development of a fluid bed granulation feed-
forward control method, a quantitative PLS model for in-line
moisture content prediction of the granulated end product was
built using the NIR data.
2. Materials and methods

2.1. Materials

Each batch, consisting of dextrose monohydrate (700 g,
Roquette Fr�eres, Lestrem, France) and unmodified maize starch
(277.5 g, Cargill Benelux, Sas van Gent, The Netherlands), was
granulated with an aqueous binder solution of Tween 20 (2.5 g,
Croda Chemicals Europe, Wilton) and hydroxypropylmethylcellu-
lose (HPMC) (20 g, type 2910, Dow Chemical Company, Plaque-
mine-LA, USA). Two different HPMC viscosities were used, namely
15 mPa s (case studies A and C) and 5 mPa s (case study B). Each
batch consisted of a total amount of solids of 1000 g. The HPMC
binder was always sprayed as a 4% (w/w) solution.

2.2. Process description

Granulations were performed in a laboratory-scale fluid bed
granulator (GPCG 1, Glatt, Binzen, Germany). A 1.2 mm diameter
nozzle was installed top-spray at a height of 26 cm from the
distributor plate. The binder liquid was atomized using a pressure
of 1 bar during all granulations. Granulator filter bags were
shaken every 45 s for a period of 7 s to prevent the entrapment
of particles in the bags. The inlet air temperature during the
spraying phase, the spray rate and the inlet air temperature
during the drying phase were varied according to a 2-level full
factorial design with three center point repetitions (i.e., 11
granulation experiments, see Table 1). Inlet air, product and
exhaust air temperatures were manually recorded every minute
during the entire granulation process. The process was stopped
when an outlet air temperature of 37 1C and a product tempera-
ture of 45 1C were obtained.
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2.3. Collection of granule information during processing

2.3.1. Case study A: in-line SFV and at-line NIR spectroscopy

A spatial filter velocimetry probe (Parsum IPP 70, Gesellschaft
für Partikel-, Strömungs- und Umweltmesstechnik, Chemnitz,
Germany) was installed in the fluid bed granulator at a height
of 20 cm and at approximately 5 cm from the sidewall of the
granulator (Figure S1a, supplementary data). Particles were
passed through an aperture with 4 mm diameter and an internal
(20 L/min) and external (3 L/min) pressurized air connection were
used to disperse the particles and prevent fouling of the measure-
ment zone by the moist product. The experimental set-up was
optimized in a previous study, enabling representative size
measurements without disturbing the process [5]. Measured
raw data were collected via an A/D converter. The software
(In-line Particle Probe V7.12a) operated in the Windows XP
environment. The SFV technique expresses the measured particle
size distribution as a sieve distribution and via size percentiles
(x01, x10, x25, x50, x63, x75, x90, x99). The sieve sizes are selected
prior to executing the experiments and cannot be changed after-
wards. During the entire granulation process, particle size mea-
surements were continuously performed and an average particle
size distribution was saved every 10 s.

At the end of each spraying cycle, a sample was withdrawn
from the granulated mass via the built-in sample thief. The
sample was at-line measured with diffuse reflectance NIR spec-
troscopy using a Nicolet Antaris II FT-NIR analyzer (Thermo Fisher
Scientific, USA) equipped with an InGaAs detector and a quartz
halogen lamp. The instrument was furnished with an integrating
sphere module and controlled with the software package RESULT
3.0. The sampled granules were poured into the NIR instrument’s
sample cup, after which the sample cup was placed on the
detection window of the integrating sphere. By rotating the cup
in between NIR spectra collection, each sample was measured at
3 different positions. All spectra were collected in the 4000–
10,000 cm�1 spectral region with a resolution of 8 cm�1 and
averaged over 32 scans. The background was measured using the
gold-plated inner wall of the integrating sphere.

2.3.2. Case study B: in-line SFV and in-line NIR spectroscopy

The granule size distribution was collected in real-time by
implementing the SFV probe in the fluid bed granulator identical
to the setup described in 2.3.1. (case study A).

In-line diffuse reflectance NIR spectra were continuously col-
lected during granulation by the use of an FT-NIR spectrometer. The
NIR instrument described in 2.3.1. was used and equipped with a
fiber–optic non-contact probe for in-line measurements. Spectra
were acquired every 20 s in the 4000–10,000 cm�1 spectral region
with a resolution of 8 cm�1 and averaged over 32 scans. The
background was measured by holding a golden plate (dimensions
7.6 cm�2.5 cm) to the measurement window of the probe. The NIR
probe was mounted in the granulator at a height of 7 cm (identical
to the height of the system integrated sampling thief) and a depth of
0.5 cm (Figure S1b, supplementary data).

2.3.3. Case study C: in-line FBRM and in-line lighthouse NIR

spectroscopy

The granule size distribution was continuously monitored by
implementing a focused beam reflectance measurement probe
(model C35, Mettler Toledo, Columbus (Ohio), USA) in the fluid
bed granulator (Figure S1c, supplementary data). The pressurized
air activated scraper cleaned the probe window every 2 s and the
acquisition parameters were set to save the average particle size
distribution every 10 s using a scan speed of 4 m/s. The FBRM
probe was positioned at a height of 20 cm (identical to the SFV
probe) and a depth of 3 cm inside the fluid bed container. Due to
the location of the FBRM measurement window at the probe tip,
the instrument was inserted to a smaller depth compared to the
SFV probe. Nevertheless, FBRM and SFV measurements were
performed at identical locations since SFV windows are approxi-
mately 2 cm distant from the probe tip.

In-line diffuse reflectance NIR spectra were continuously
collected during granulation using an FT-NIR spectrometer
(MATRIXTM-F Duplex, Bruker Optics Ltd., UK) equipped with a
fiber–optic Lighthouse ProbeTM (LHP, GEA Pharma Systems
nv—Collette, Wommelgem, Belgium). The LHP is an immersion
probe with seven radial windows that radiate and collect light.
Hence, sampling is performed 3601 around the probe. The
spectrometer operated in the 4000–10,000 cm�1 NIR region and
spectra with a resolution of 8 cm�1 and averaged over 32 scans
were continuously collected. The NIR measurements in case
studies B and C were performed at identical locations inside the
granulator, but the NIR LHP had to be inserted to a greater depth
as the measurement windows are positioned 3.75 cm from the
probe tip (the measurement window of the NIR probe used in
case study B was located at the probe tip itself). The close
proximity of the NIR probe to the bottom of the fluid bed
granulator ensured a measurement position with continuous
dynamically flowing material in front of the probe window.
However, this also introduced the danger of modifying the airflow
pattern in the granulator and consequently the agglomeration
process. Figure S2 (see supplementary data) displays the off-line
sieve analysis results of batches 2, 1 and 7 granulated in case
studies A and C to show the effect of implementing the NIR LHP.
Batch 2 was granulated using a spraying temperature of 50 1C and
spray rate of 12 g/min (Table 1). The perfect agreement between
batch 2 sieve distributions for case studies A and C proved that
the NIR LHP did not influence the agglomeration process under
low-moisture spraying phase conditions. However, the particle
size distributions of batch 1 and particularly batch 7 (granulated
at an inlet air temperature of 30 1C and spray rate of 12 and 20
g/min respectively) shifted to larger sizes in case study C. Hence,
the influence of the NIR LHP on the granulation process was more
pronounced using medium- and high-moisture granulation con-
ditions. The probe significantly disturbed the airflow pattern and
consequently the simultaneous process of heat and moisture
transfer during granulations with a low spraying temperature
and/or a fast spray rate. Therefore, the granulation liquid was not
efficiently evaporated and overwetted granules were produced.

Although the information provided by the in-line FBRM and
NIR LHP in case study C described the different stages of
granulation and allowed to monitor the process, the design and/
or location of the NIR LHP was not suitable for the laboratory-
scale fluid bed granulator. Hence, it was impossible to generate a
feed-forward control strategy for case study C.
2.4. Characterization of granules

2.4.1. Karl Fischer titration

The reference moisture content of the granule batches was
determined off-line using a V30 volumetric Karl Fischer titrator
(Mettler Toledo, Gießen, Germany). Hydranals-Composite 5
(1-component, Sigma-Aldrich, Germany) was used as titrant and
Hydranals-Methanol dry (Sigma-Aldrich, Germany) as solvent.
Three Karl Fischer determinations were performed for each
completed batch. The water content in the samples was deter-
mined via the quantitative reaction of water molecules with
iodine and sulfur dioxide in the presence of methanol and
imidazole as base. The amount of iodine consumption as a result
of the reaction with water was measured.
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2.4.2. Density measurements

The bulk density and tapped density were determined for each
completed batch. Twenty-five g samples were gently poured into
a 100 mL graduated cylinder. By the use of the granule weight and
volume, bulk density was calculated. Next, each sample was
tapped 1250 times employing an automatic tapper (J. Engelsmann
AG, Ludwigshafen am Rhein, Germany) and the new volume was
used to determine the tapped density. All density measurements
were performed in triplicate and the average density was
calculated.

2.5. Development of the granulation feed-forward control strategy

In-process measurements of the agglomerates’ properties,
performed during the spraying phase of the batch process, were
used to predict the end product granule characteristics (bulk and
tapped densities) using a PLS model (see (ii) below). When these
predicted densities were not as desired, the drying temperature of
the successive drying phase was adjusted. The extent to which the
drying temperature had to be adjusted was derived from a DoE
model (see (i) below), expressing the granule bulk and tapped
densities as a function of the spraying temperature, spray rate and
drying temperature.
(i)
 A 2-level full factorial design (see 2.2. and Table 1) was
carried out, resulting in a polynomial regression model (con-
sidering the 3-factor interaction term negligible) for each
response:

y¼ b0þb1x1þb2x2þb3x3þb12x1x2þb13x1x3þb23x2x3 ð1Þ

with y the response (i.e., bulk or tapped density), x1�3 the
coded process variables (the inlet air temperature during the
spraying phase, the spray rate and the inlet air temperature
during the drying phase), b0 the intercept and bi the model
coefficients expressing for each factor how much the response
is affected by changing the factor from the coded DoE level
0 to þ1. Individual regression models were developed for
bulk density and tapped density. The authors acknowledge
that the use of a central composite design might improve the
predictive capability of the models, as each factor is then
varied on five experimental levels instead of three. Analysis of
the design experiments and development of the DoE models
were done with the MODDE software (Version 9.0, Umetrics,
Umeå, Sweden).
(ii)
 Partial least squares models were built using the SIMCA-Pþ
software (Version 12.0.1, Umetrics, Umeå, Sweden), correlat-
ing two data matrices, X and y. The X-matrix contained
granulation information collected during the spraying period
of the 11 DoE batches, while the y-vectors consisted of the
design responses, bulk and tapped densities. Individual PLS
models were developed for bulk density and tapped density.
Applying these PLS models during new granulations allows
predicting the density of a completed batch (i.e., after spray-
ing and drying phase) at the end of the spraying period.
Hartung et al. [8] reported that not only residual moisture in
granules affected subsequent process steps, but also the
moisture profile of the entire granulation process. Hence a
similar approach, examining whether the complete spraying
phase fingerprint contributed to the predictability of the
density models, was considered. Therefore, the 3-way data
matrix of [design batches (I)]� [collected granulation process

and product variables (J)]� [spraying time (K)] was unfolded in
the direction of the batches, creating a 2-way data matrix
[design batches (I)]� [collected granulation process and product

variables� spraying time (J�K)] (Figure S3, see supplementary
data) [37]. In that way, the X-matrices of the developed PLS
models contained 11 rows, corresponding to the 11 design
batches, and the number of columns depended on the
included spraying phase time-period. This resulted in the
development of several PLS models (for bulk density and
tapped density individually), differing in the number of X-
matrix columns describing the collected spraying phase data.
�
 Case study A - In-line SFV and at-line NIR measurements: The
first 3 X-matrix columns for the various PLS models developed
in case study A contained the settings of the 3 process
variables (spraying temperature, spray rate and drying tem-
perature) describing the collected granulation process data.
The following columns of models M0 and M1 consisted of the
collected granulation product information (based on SFV and
NIR measurements) at the end of the spraying phase (i.e.,
when all granulation liquid has been sprayed) (Fig. 1a). Hence,
the X-matrix of model M0 contained the 3 process variables
and the in-line SFV measured granule size. The 8 percentile
descriptors (see 2.3.1) were used to express the granule size
distribution as the size of the smallest SFV sieve was set to
200 mm, which was too large to capture the size distribution
variations between the different experiments.
The X-matrix of model M1 was identical to the M0 X-matrix,
complemented with the at-line collected NIR information.
To express the NIR captured spectral variation between the
11 design batches, principal component analysis (PCA) was
performed on all at-line collected NIR spectra (3 spectra�11
batches). The score values on the principal components (PC1
and PC2) were added to the M1 X-matrix.
Models M2–M9 were built by adding each time the granule
size distribution collected during the previous spraying phase
minutes to the X-matrix (Fig. 1a).

�
 Case study B - In-line SFV and in-line NIR measurements: The

M1 X-matrix included the 3 process variables, the granule size
distribution and the NIR data (expressed by PCA scores)
collected at the end of the spraying phase, as described above
for case study A. Based on the granule sizes measured in case
study A, the SFV sieves were correctly selected and used to
describe the collected granule size distribution during granu-
lation (Fig. 1b).
Since both SFV and NIR measurements were continuously

performed, M2–M5 X-matrices contained both types of granule

product information collected during the previous spraying phase
minutes (Fig. 1b).

The goodness of fit and the predictive power of the PLS models
were given by R2 and Q2. R2 expresses the percent variation of the
response explained by the model and Q2 measures how well the
model is able to predict the examined response for new experi-
ments (test batches). In addition to the evaluation of R2 and Q2,
the root mean square errors of estimation (RMSEE) and root mean
square errors of prediction (RMSEP) were compared to select the
best PLS prediction model. Both errors indicate the difference
between the experimentally measured value and the value pre-
dicted by the model under examination, for the calibration and
test batches respectively.

The feed-forward control strategy, guaranteeing the granule
quality of future experiments, combines the optimal predictive
PLS model with the DoE regression equation. When a new
granulation process is started, the selected PLS model allows the
prediction of the end product quality (i.e. density of the end
product) at the end of the spraying period based on the real-time
collected granule information. If the predicted density does not
meet the predefined quality requirements, the DoE model terms
(Eq. 1) expressing the influence of the drying temperature on the
batch density (i.e., b3x3, b13x1x3, b23x2x3) can be used to calculate
by how many (coded) units the drying temperature should be



Fig. 1. The X-matrix and y-vector for the developed bulk density and tapped density PLS models in case studies A (a) and B (b) (PSD¼particle size distribution).
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adjusted to lead the granulation process towards the desired
density. To exemplify, if the predicted density differs from the
desired density by A g/mL, then the level of the pre-set nominal
drying temperature (x3, coded according to the performed DoE)
should be adjusted with D units (coded as above) established by
the following equations (expressed with coded DoE variables and
corresponding coefficients):

yþA¼ b0þb1x1þb2x2þb3ðx3þDÞþb12x1x2

þb13x1ðx3þDÞþb23x2ðx3þDÞ ð2Þ

A¼ b3Dþb13x1Dþb23x2D ð3Þ

D¼
A

b3þb13x1þb23x2
ð4Þ

2.6. Development of an NIR method to predict end product moisture

content

A quantitative NIR calibration model for in-line moisture
content prediction of the granulated end product in case study
B was developed. Calibration and validation batches were man-
ufactured by granulation of the previously described formulation
(2.1.), and terminating the drying period at different exhaust air
temperatures to create granules with varying moisture levels.
Subsequently, the fluid bed container was removed from under-
neath the filter housing and by immersion of the NIR probe in the
granule bed, static NIR spectra were at-line recorded (at different
locations in the bed). The moisture reference value was deter-
mined by Karl Fischer titration using the average of three
measured samples. In total, 20 NIR spectra of each batch were
correlated with the Karl Fischer determined moisture content
using PLS regression. The calibration model covered a water
content range between 4% and 10% including 9 concentration
levels. In the diffuse reflectance measurement, the light travels
various distances because the distribution of sample particles and
particle sizes are different. Hence, prior to modeling the absor-
bances in the 4500–7500 cm�1 spectral region of 180 NIR spectra,
standard normal variation (SNV) correction was performed to
eliminate these scattering effects and the spectra were mean
centered. The calibration of the PLS model was evaluated by
calculation of the RMSEE. The model was externally and inde-
pendently validated by computing the RMSEP using 140 spectra
of 7 validation batches.
3. Results and discussion

3.1. Case study A: in-line SFV and at-line NIR spectroscopy

For the 11 DoE granulations performed in case study A, batch
bulk and tapped densities were determined in triplicate and
averages were used as design responses. Individual bulk and
tapped density multiple linear regression models were computed
and the significance of the coefficients was determined by
calculation of the 95% confidence interval. The confidence inter-
vals of the three 2-factor interaction coefficients included zero
indicating the statistical insignificance of the interactions. The
insignificant coefficients were removed and the following bulk
density (BD) and tapped density (TD) regression equations (based
on the coded variables) were obtained after refitting the models:

BD¼ 0:4357�0:0268� Tsprayingþ0:0204� spray rate�0:0196� Tdrying

ð5Þ

TD¼ 0:5307�0:0258� Tsprayingþ0:0181� spray rate�0:0284� Tdrying

ð6Þ

As described in 2.5., separate PLS models were developed for
bulk and tapped densities (y) to predict the densities of a
completed batch (i.e. after the spraying and drying phase) based
on the collected data during the spraying period (Fig. 1a). There-
fore, all available granulation process and product information

related to batch density were included in the PLS X-matrices.
Herewith, the settings for the 3 process variables (i.e., spraying



Fig. 3. R2, Q2, RMSEE and RMSEP for bulk density (BD) and tapped density (TD) PLS

models M0–M9 (case study A).

Table 2
Comparison of the experimentally applied drying temperature with the estimated

optimum drying temperature for 4 test batches (case study A) using the process

control methodology.

Batch Used Tdrying (1C) M0 M1 M2 M3 M4 M5 M6 M7 M8 M9

Estimated drying temperature based on predicted bulk density (1C)

T4 50 50 50 50 50 49 49 49 49 49 50

T8 70 76 75 75 74 73 73 72 72 73 73

TCP1 60 60 60 60 60 60 59 58 57 55 54

TCP2 60 61 58 57 56 56 56 55 54 53 53

Estimated drying temperature based on predicted tapped density (1C)

T4 50 49 50 50 50 49 49 49 50 50 50

T8 70 73 73 72 71 70 69 69 69 70 70

TCP1 60 60 60 59 59 59 59 58 57 56 54

TCP2 60 60 57 56 56 56 56 55 54 54 53
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temperature, spray rate and drying temperature) were included
as they significantly influenced the end product density according
to the DoE analysis. Furthermore, since the density of a product is
defined as the mass of the material divided by the volume the
material occupies (i.e., volume of individual particles, inter-
particle volume and the internal pore volume), the granule size
distribution during the spraying phase is related to batch density.
Consequently, the X-matrix of the initially constructed PLS model
(model M0, Fig. 1a) included the 3 process variable settings and
the particle size distribution determined at the end of the
spraying period.

Principal component analysis was performed on all NIR spec-
tra collected for the 11 design batches to examine the spectral
differences between the batches. Using the SNV corrected 4500–
7500 cm�1 spectral region, a model consisting of 2 principal
components (PC1 and PC2), describing 99.9% of the spectral
variation was computed. The PC1 and PC2 loading plots exhibited
large contributions by the 7000 cm�1 and 5200 cm�1 spectral
regions, corresponding to the NIR absorption bands of water. The
PC1 versus PC2 scores plot showed clustering of the design
experiments along PC1 describing the variability in granule
moisture level caused by the process settings of the granulation
cycles (Fig. 2). Experiments performed at a low spraying tem-
perature and a high spray rate (�1,1; high granule moisture)
clustered in the outer positive region of PC1, while experiments
executed using a high spraying temperature and low spray rate
(1,�1; low granule moisture) grouped in the negative part of PC1.
Combinations of spraying temperature and spray rate resulting in
a moderate granule moisture state (1,1; 0,0; �1,�1) lay around
the PC1 origin. Hence, instead of including all NIR spectral
variables, only the PC1 and PC2 scores were added to the PLS X-
matrix (model M1, Fig. 1a) comprising the NIR captured granule
moisture differences between the various batches. The addition of
the granule size distributions collected during the preceding
spraying phase minutes resulted in the development of models
M2–M9 (Fig. 1a).

Fig. 3 displays the resulting R2, Q2, RMSEE and RMSEP values
for the developed BD and TD PLS models M0–M9. The calculation
of the prediction error (RMSEP) was based on the predicted
densities of 4 new independent batches (not included in the
calibration set). Four randomly selected batches from the per-
formed DoE, namely batch 4, 8 and twice the center point, were
granulated a second time covering drying temperatures of 50 1C,
70 1C and 60 1C. The bulk and tapped density R2 and Q2 values
lay in the same range, with repeatedly higher values for BD
models. Adding PCA scores distinctively increased the models’
Fig. 2. PC1 (R2X¼98.4%) versus PC2 (R2X¼1.5%) scores plot of the at-line collected

NIR spectra for the 11 design experiments performed in case study A. The scores

are labeled according to the coded DoE experiment settings for the spraying

temperature and spray rate. Three NIR spectra were collected per design

experiment.
predictability based on about 10% rise in Q2 values between M0
and M1. Adding the granule size distributions collected during the
complete spraying phase to the X-matrices improved only slightly
the predictability. Maximum Q2 was reached by models M3 and
M4. According to the estimation and prediction errors, optimal
density prediction resulted from the granule information col-
lected at the end of the spraying period. Adding the full particle
size fingerprint collected during spraying did not seem to con-
tribute to a better predictability.

The feed-forward control strategy described in Section 2.5
requires (i) a valid prediction of the batch density after completion
of the spraying period, and (ii) a reliable estimation of the optimal

drying temperature to obtain the desired density, using the DoE
regression equation. The latter was assessed for the previously
mentioned 4 test batches by means of Eq. 1. Hence, the drying
temperature (x3) was computed applying the predicted BD (y), the
significant regression coefficients (bi) and the experimentally set
spraying temperature (x1) and spray rate (x2). The BD values
predicted by all 9 PLS models (M0–M9) were used in these
calculations and identical computations were carried out based
on the predicted TDs. As the drying phase of the 4 test batches
was experimentally executed, these calculated drying tempera-
tures were compared to the drying temperatures applied during
processing (Table 2). The drying temperature predictions were
satisfactory, keeping in mind that an increase in drying tempera-
ture by 1 1C, reduces the BD and TD by 0.0020 g/mL and 0.0028
g/mL respectively. In general, the accuracy of drying temperature
prediction tends to decrease going from M0 to M9, caused by the
growing incorrectness in batch bulk and tapped density predic-
tions when adding spraying phase information collected early in
the process (Fig. 3).
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3.2. Case study B: in-line SFV and in-line NIR spectroscopy

3.2.1. Qualitative monitoring of the granulation process

In-line SFV measurements were appended with in-line NIR
spectra collection during the 11 design granulations to describe
the continuously evolving granule size and moisture. Fig. 4(a–d)
exemplifies the change in NIR spectra and SFV measured average
particle size (D50) during one of the performed DoE experiments
(batch 3).

Examination of the raw NIR data without preprocessing
(Fig. 4a) showed that spraying of the binder liquid onto the
fluidizing bed, caused a significant increase in spectrum baseline,
most likely due to the increasing particle size [30,38]. During
subsequent drying, water removal and attrition decreased the
granule size and therefore influenced the physical state of the
measured samples. This was associated with a lowering of the NIR
spectrum baseline.
Fig. 4. Granulation product and process information in-line collected during granulatio

and drying steps of the granulation process (a). SNV corrected NIR spectra collected duri

is related to the spraying and drying times with dark and light colors indicating the sta

product and exhaust air temperatures (e) during the granulation process.
By SNV preprocessing of the NIR spectra, physical light-
scattering effects were removed from the chemical light absor-
bance effects in the spectra [39,40]. Fig. 4(b and c) displays the
NIR spectra collected during the spraying and drying operation,
respectively, after SNV preprocessing. The color assignment to the
spectra is related to the spraying and drying times with dark and
light coloring indicating the start and the end of the cycle,
respectively. The spectral evolution was characterized by a strong
increase and subsequent decrease in NIR absorptions in the
5200 cm�1 and 7000 cm�1 spectral region. These regions are
associated with the OH combination band of the fundamental
stretching and deformation vibration, and the first overtone of the
OH bond in water, respectively. The signal in the first overtone
region for CH, CH2 and CH3 around 5700–6000 cm�1 decreased
during spraying and increased throughout drying.

The PC1 obtained after principal component analysis on the SNV
corrected spectra (4500–7500 cm�1 spectral region) accounted for
n of batch 3 (case study B). Pure NIR spectra collected during the mixing, spraying

ng the spraying phase (b) and drying phase (c). The color assignment to the spectra

rt and the end of the cycle, respectively. Evolution of D50 and PC1 scores (d), and



Fig. 5. R2, Q2, RMSEE and RMSEP for bulk density (BD) and tapped density (TD) PLS

models M1–M5 (case study B).

Table 3
Comparison of the experimentally applied drying temperature with the estimated

optimum drying temperature for 4 test batches (case study B) using the process

control methodology.

Batch Used Tdrying (1C) M1 M2 M3 M4 M5

Estimated drying temperature based on predicted bulk density (1C)

T1 50 52 52 51 53 54

T5a 70 67 68 62 64 63

T5b 70 69 71 67 72 71

T8 70 73 72 68 70 68

Estimated drying temperature based on predicted tapped density (1C)

T1 50 51 49 52 52 54

T5a 70 75 73 69 69 68

T5b 70 78 81 80 78 79

T8 70 77 79 74 73 71
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90% of the spectral variation. Similarity between the PC1 loading
profile and the NIR spectrum of water confirmed the association of
this component with the water addition/removal during the granula-
tion process. The trajectory of PC1 scores as a function of granulation
time (Fig. 4d) displayed a clear distinction between the 3 granulation
process steps. During heating and powder mixing (step I, data shown
of the final minute), the score values were similar. The addition of
binder liquid in the second step increased the PC1 scores, while
drying of the granules caused a score value decrease until a minimum
value was reached similar to the PC1 scores in step I. The trajectory of
SFV collected D50 values during granulation exhibited a similar
sequence of the three granulation process steps. A constant particle
size during sample agitation and heating was followed by a particle
size increase during the spraying of binder liquid. Drying slightly
reduced the average granule size due to inter-particle and particle–
fluid bed container collisions. As can be seen from Fig. 4d, the
variation in NIR scores and SFV measured particle size during
granulation provided improved knowledge on the batch evolution.
A better insight into the granulation under examination is achieved,
compared to the traditionally used product and exhaust air tempera-
ture control charts. Fig. 4e shows that after approximately 8 min in
the spraying period, the process variables no longer provided infor-
mation on the granulation progress as product and exhaust air
temperatures remained constant. During routine production, the
use of a plot expressing particle size and moisture content trajectories
(Fig. 4d) allows determining whether a batch is developing under the
normal operating conditions and granulation is being performed
accordingly [6].

3.2.2. Development of the granulation feed-forward control strategy

After executing the 11 design granulations, the end product
bulk and tapped densities were determined and the coefficients of
the significant main and interaction effects were calculated. The
following bulk density and tapped density regression equations
(based on the coded variables) were obtained:

BD¼ 0:4733�0:0332� Tsprayingþ0:00236� spray rate�0:0164

�Tdryingþ0:0107� Tspraying � spray rate ð7Þ

TD¼ 0:5744�0:0211� Tsprayingþ0:0096� spray rate�0:0246

�Tdryingþ0:0207� Tspraying � spray rate ð8Þ

To construct bulk and tapped density PLS models, a similar
methodology as for case study A (3.1.) was followed, however
with one difference. In addition to the granule size, NIR spectra
were continuously in-line collected during the entire DoE gran-
ulation process. Principal component analysis was performed on
the SNV corrected 4500–10,000 cm�1 spectral region of all
collected NIR spectra (for all batches) to examine the NIR
captured granule differences among the 11 design batches. The
NIR variables contributing most to the 2 first principal compo-
nents were associated with the two water bands. Hence the
scores on PC1 and PC2 were added to the PLS X-matrices to
describe the granule moisture information captured by in-line
NIR spectroscopy. Figure S4 (see supplementary data) displays the
RMSEE and RMSEP values of the resulting bulk density PLS
models M1–M5, without and with the inclusion of NIR scores in
the X-matrix. Since case study A showed that the information
collected during the final minutes of the spraying period pro-
duced the best BD predictions, only 5 PLS models were developed
using the granule size and moisture information collected at the
end of spraying, augmented with the granule data collected
during the final 4 min of spraying (i.e., models M1–M5).
To calculate the prediction error, 4 new batches (i.e., batch 1, 5
(twice) and 8), not included in the calibration set were granulated
a second time. The resulting RMSEE values decreased by the
addition of NIR information, while RMSEP values exhibited a more
random trend.

As a result, taking Figure S4 (see supplementary data) into
account, the X-matrices of the developed BD and TD PLS models
in case study B were composed of continuously collected granule
size and moisture data (Fig. 1b). The resulting BD and TD PLS
models showed excellent fit and predictability, with the BD
models producing slightly higher R2 and Q2 values (Fig. 5). Both
BD and TD models showed that the addition of size and NIR
information collected during the final minutes of the spraying
period improved the fit and predictability of the calibration
batches as R2, Q2 and RMSEE values reached a maximum respec-
tively minimum for model M5. The density prediction of new,
independent batches did not exhibit an identical trend. The initial
addition of granule information resulted in a small decrease in
prediction error. Further inclusion of X-variables did not benefit
the predictions and tends to indicate overfitting. For both BD and
TD, the models fit the data well, but the TD predictions are less
good, indicating an improved correlation between the collected
granule information and the free bulk density. These results are
consistent with the observations made in case study A.

After the valid prediction of batch density from the data
collected during the spraying phase, the reliable estimation of
the optimal drying temperature resulting in the required density
was assessed. This was initially examined by calculating the
drying temperatures using the PLS predicted BD and TD values
of the 4 test batches (for the 5 PLS models), in combination
with Eqs. 5 and 6 respectively. The drying phases of the 4 batches
were experimentally completed, which allowed the comparison
between the predicted and the applied drying temperatures
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(Table 3). The correctness in temperature prediction based on
predicted BD was comparable to the results in case study A. The
computed drying temperatures based on predicted TD however
displayed a larger bias, probably due to the notably higher TD
prediction error (Fig. 5).

In case studies A and B, the ability of the developed PLS models
to predict the density of future batches was evaluated using test
batches not included in the calibration set. Hence, a primary
selection of the X-variables correlating with the batch density
was made. Comparing the predicted drying temperature (from
implementing the PLS predicted density in the DoE models) with
the experimentally applied temperature allowed a first assess-
ment of the suitability of the proposed feed-forward strategy. In
the next step, the developed methodology was tested during the
granulation of new batches. To predict the batch quality at the
end of the spraying period and adjust/correct the granulation
progress during drying, BD PLS models were combined with the
BD DoE regression equation similar to case study A.

Batch CS (control strategy) was granulated using an inlet air
temperature of 30 1C and binder addition rate of 12 g/min during
the spraying period. The subsequent drying phase was executed
at an inlet air temperature of 50 1C. Throughout the complete
granulation process, granule size data and NIR spectra were
continuously collected. The acquired granulation information
was used to predict the batch bulk density using models
M1–M5. Hence, by use of the 2 spraying period parameters, the
in-line collected product information and the intended use of an
inlet air temperature of 50 1C during drying, the bulk density of the
completed batch was predicted at the end of the spraying period.
Drying of batch CS at an inlet air temperature of 50 1C enabled the
comparison between this early-on predicted BD and the experimen-
tally measured value (Table 4, batch ID CS). The excellent agreement
between the measured BD (after batch production) and the pre-
dicted BD (at the end of the spraying period) for models M1–M3
demonstrated the validity of the developed PLS models. The
predicted BD values by models M4 and M5 are also in close
agreement with the measured BDs, but exhibit a slightly larger
deviation compared to M1–M3 predictions.

Next, the use of the developed BD DoE regression equation to
determine the optimal drying temperature was examined. We
decided that granulation of batch CS should give a BD of 0.48
g/mL instead of 0.52 g/mL. The adjusted drying temperature
resulting in a BD decrease of 0.04 g/mL, was calculated by the
use of Eq. 4. Keeping in mind that the values of the process
variables and coefficients are expressed according to the DoE
scaling (i.e., spraying temperature of �1 and spray rate of �1),
the following calculations were performed:

adjusted x3 ¼ x3þD¼ x3þ
�0:04

b3þb13x1þb23x2

� �

adjusted x3 ¼�1þ
�0:04

�0:0164þð�0:00258��1Þþð0:009275��1Þ

� �
¼ 0:7
Table 4
Use of the developed granulation feed-forward control strategy. Comparison of the

temperature of 50 1C, with the experimentally measured bulk density applying a dryin

Predicted BD (g mL�1)

Batch ID M1 M2 M3

CS 0.5174 0.5136 0.5165

CS adjusted a 0.5233 0.5185 0.5248

CS adjusted b 0.5173 0.5130 0.5172
The experimental drying temperature levels of 50 1C, 60 1C and
70 1C were coded to �1, 0 and 1 according to the DoE (Table 1).
Hence, conversion of the coded into the uncoded value, shows
that the pre-set drying temperature of 50 1C should be increased
to 67 1C to obtain the desired BD.

0:7ðcodedÞ ¼ 60 3Cþð10� 0:7Þ ¼ 67 3CðuncodedÞ

Therefore, batch CS was granulated twice more using identical
spraying phase settings and a drying temperature of 67 1C (i.e., batch
CS adjusted a and b). Table 4 displays the predicted bulk density
based on the process settings (drying temperature of 50 1C) and the
collected granule information at the end of the spraying period.
According to the predictions by M1–M3, this would result for both
batches into a BD of 0.52 g/mL as observed for batch CS. However, as
we aimed to obtain a BD of 0.48 g/mL, a temperature of 67 1C derived
from the BD DoE regression equation was applied during drying. The
subsequent experimental BD value measurements of 0.48 g/mL was
consistent with the desired density.

These results suggest that the developed BD PLS model allowed a
reliable prediction of batch density using granule information col-
lected during the end of the spraying period (M1–M3). The granule
behavior fingerprint during the complete granulation cycle did not
improve the predictions. By use of the BD design equation, the
granulation process could be adjusted during drying (adjusted drying
temperature), hence guiding the process towards the desired density.
3.2.3. Development of an NIR method to predict end product

moisture content

The developed PLS calibration model for end product moisture
content prediction (described in 2.6.1.) exhibited an RMSEE and
RMSEP of 0.51% and 0.47% respectively. Optimum moisture content
predictions were obtained using 2 PLS factors. In the selected
predictive model, 94% of the spectral variance was correlated with
87% of the water variation. The calibration model was applied to the
in-line collected NIR spectra of the 11 design batches. The moisture
content predicted during the final minute of drying was compared to
the reference moisture content determined by Karl Fischer titration
(Table 5). The in-line predictions were attended with an RMSEP of
0.51%, comparable to the error of the calibration model. Hence,
although the calibration model was developed by the use of statically
recorded NIR spectra, the model was also applicable to dynamically
collected spectra.

In addition to the in-line collected NIR spectra, 20 at-line NIR
spectra were recorded per design batch after granulation. At-line
moisture content predictions resulted in an RMSEP of 0.43%.
Similar in-line and at-line prediction errors suggest that the
continuous flow of particles during in-line NIR spectra collection
did not reduce the predictability of the NIR measurements. It also
implies that the moisture predictions were not affected by the
build-up of material on the probe using these granulation process
conditions. Since no cleaning device was used, the NIR window
was probably continuously cleaned by the product itself during
fluidization.
predicted bulk density (BD) at the end of the spraying period using a drying

g temperature of 50 1C (batch CS) and 67 1C (batch CS adjusted a and b).

Measured BD (g mL�1)

M4 M5 Tdrying 50 1C Tdrying 67 1C

0.5119 0.5102 0.5161

0.5192 0.5197 0.4823

0.5058 0.5044 0.4792



Table 5
Moisture content (MC) and standard deviation determined using Karl Fischer (KF)

and predicted by the near infrared PLS calibration model for the design granula-

tions performed in case study B.

DoE Batch KF MC (%) in-line NIR (%) at-line NIR (%)

1 6.2170.23 7.6970.00 7.2370.12

2 7.1370.18 7.0570.02 7.1970.04

3 7.2870.02 7.0170.04 7.2270.07

4 6.8770.07 6.8870.01 6.8170.03

5 7.0170.35 7.3370.02 7.3670.06

6 7.6970.12 7.4670.04 7.3170.06

7 7.2170.22 7.4070.04 7.2570.10

8 7.2370.08 7.5570.03 6.5170.04

9 6.7270.21 7.1970.02 7.1370.04

10 7.3870.06 7.0370.08 7.5670.05

11 7.1770.08 7.0670.00 7.1570.04
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4. Conclusions

This work aimed to develop a fluid bed granulation control
strategy based on real-time collected process and product infor-
mation. The developed feed-forward control strategy uses gran-
ulation information collected during the spraying phase to
determine the optimal drying phase temperature, hence ensuring
end product density.

The finalized control strategy (case study B) applied an in-line SFV
and NIR probe to continuously collect granule size and moisture data.
The developed BD PLS model enabled a good prediction of batch BD
by use of the granule size distribution and NIR data collected at the
end of the spraying period. Addition of granule product information
collected during the complete granulation cycle did not improve the
predictions. Applying the BD DoE regression equation information,
the granulation process was modified during the drying period to
meet the quality requirements. In addition, the SFV measurements
and NIR data allowed the clear distinction between the three different
stages of a granulation process. Through the development of a
quantitative NIR moisture calibration model, adequate in-line predic-
tion of batch end product moisture levels was achieved.

Hence, the results showed that by combining particle size
(SFV) and moisture (NIR) trajectories, real-time monitoring of the
granulation progress was accomplished. The real-time measure-
ment of end product particle size and prediction of its moisture
content enabled in-line granule quality analysis. In addition, the
adjustment of granulation progress during drying to meet the
desired bulk density requirements showed that full control of the
granulation process is possible by use of SFV and NIR spectro-
scopy. Implementation of the (automated) control strategy
should result in the production of high quality batches at lower
overall costs.
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